Sains Malaysiana 53(9)(2024): 3021-3029
http://doi.org/10.17576/jsm-2024-5309-09
Peningkatan Pertumbuhan dan Pengumpulan Lipid dalam Biojisim Coelastrella sp.
(UKM4) semasa Fikoremediasi Air Larut Lesap
(Enhanced
Growth and Lipid Accumulation in Coelastrella sp.
(UKM4) Biomass during Phycoremediation of Leachate)
MOHAMAD FAISAL NI AZNAN, NAZLINA HAIZA MOHD
YASIN* & VIKESH VARMA ANATHAN
Department of Biological Sciences and
Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
Received: 2 May 2024/Accepted: 9 July 2024
Abstrak
Mikroalga berpotensi dalam merawat air lesap dan bioijisimnya mampu menghasilkan kandungan lipid yang boleh digunakan untuk menghasilkan biodiesel. Namun, pertumbuhan mikroalga dalam media kompleks seperti air larut resap adalah aspek yang penting untuk dikaji supaya proses ini dapat dikomersialkan. Justeru, kajian ini merangkumi dua objektif iaitu untuk mengkaji model matematik yang sesuai bagi kinetik pertumbuhan Coelastrella sp. (UKM4) dalam air larut lesap dan meneroka potensi mikroalga dalam penyingkiran nutrien serta penghasilan lipid sewaktu fikoremediasi air larut lesap. Dalam kajian ini, air larutlesap yang tinggi dengan kandungan nitrogen dan fosforus digunakan untuk pertumbuhan mikroalga Coelastrella sp. (UKM4). Penilaian model matematik yang terbaik terhadap pertumbuhan Coelastrella sp. (UKM4) yang dikultur dalam air larut lesap dianalisis dengan menggunakan tiga model (Logistik, Logistik terubah suai dan Gompertz terubah suai). Hasil menunjukkan model yang terbaik bagi pertumbuhan Coelastrella sp. (UKM4) adalah model Gompertz terubah suai berdasarkan lengkung suaian yang menghampiri model dengan sisihan piawai yang kecil. Dalam tempoh 15 hari, Coelastrella sp. (UKM4) mampu menurunkan 100% nutrien dalam air larut lesap serta mengumpul kandungan jasad lipid yang tinggi dalam biojisim mikroalga. Kesimpulannya, air larut lesap yang kaya dengan kandungan nutrien merupakan media pengkulturan yang sesuai untuk pertumbuhan Coelastrella sp. (UKM4). Selain itu, penghasilan lipid yang tinggi juga berupaya menjadikan proses fikoremediasi ini lebih mampan.
Kata kunci: Air larut lesap; Coelastrella sp. (UKM4); fikoremediasi; lipid; model matematik
Abstract
Microalgae have potential in treating leachate
and its biomass is capable of producing lipids which then can be used to
produce biodiesel. However, the study about microalgae growth in the complex
media such as leachate is crucial for commercialization purposes. Thus, this
study includes two objectives which are to study a suitable mathematical model
for the growth kinetics of Coelastrella sp.
(UKM4) in leachate and to explore the potential of microalgae in removing
nutrient as well as lipid accumulation during pycoremediation of leachate. In this study, leachate with high nitrogen and phosphorus content
was used to culture microalgae Coelastrella sp. (UKM4). The evaluation of the best mathematical model of Coelastrella sp. (UKM4) grown in leachate was
analyzed using three mathematical models (Logistic, modified Logistic and
modified Gompertz). The results indicated the best model for the growth of Coelastrella sp. (UKM4) was the modified Gompertz
model due to fitted curve to the model with low standard error. Coelastrella sp. (UKM4) was able to reduce 100%
nutrient in leachate in just 15 days as well as accumulated a high amount of
lipid bodies in their biomass. In conclusion, leachate with high amounts of nutrients
is feasible as cultivation media to support the growth of Coelastrella sp. (UKM4). In addition, high lipid production can also be an added value for
sustainable phycoremediation processes.
Keywords: Coelastrella sp. (UKM4); lipid; leachate; mathematical model; phycoremediation
REFERENCES
Abbaszadeh, A., Motevali,
A., Khoshtaghaza, M.H. & Kazemi,
M. 2011. Evaluation of thin-layer drying models and neural network for
describing drying kinetics of Lasagnas angustifolia L. International Food Research Journal 18(4): 1321-1328.
Azima Syafaini Japar, Mohd Sobri Takriff& Nazlina Haiza Mohd Yasin. 2021. Microalgae acclimatization in industrial
wastewater and its effect on growth and primary metabolite composition. Algal
Research 53: 102163.
Badar, S.N., Yaakob, Z. & Timmiati,
S.N. 2017. Penilaian pertumbuhan mikroalga yang telah dipencil dari effluen kilang minyak sawit dalam media sintetik. Malaysian Journal of Analytical Sciences 21(1): 82-94.
Banch, T.J.H., Hanafiah,
M.M., Alkarkhi, A.F.M. & Amr, S.S.A. 2019.
Statistical evaluation of landfill leachate system and its impact on
groundwater and surface water in Malaysia. Sains Malaysiana 48(11): 2391-2403.
Ding, G.T., Yaakob, Z., Takriff,
M.S., Salihon, J. & Abd Rahaman, M.S. 2016.
Biomass production and nutrients removal by a newly-isolated microalgal strain Chlamydomonas sp. in palm oil mill effluent (POME). International Journal of Hydrogen
Energy 41(8): 4888-4895.
Ding, G.T., Mohd Yasin, N.H., Takriff, M.S., Kamarudin, K.F., Salihon, J.,
Yaakob, Z. & Mohd Hakimi, N.I.N. 2020. Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally
isolated microalgae: Chlorella sorokinianaUKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosaUKM7. Journal of Water Process
Engineering 35: 101202.
Fuad, M.T.K., Khalid, A.A.H. & Kamarudin,
K.F. 2021. Sustainable cultivation of Desmodesmus armatusSAG276.4d using leachate as a growth
supplement for simultaneous biomass production and CO2 fixation. International
Journal of Renewable Energy Development 10(4): 865-873.
Halim, R. & Webley, P.A. 2015. Nile red
staining for oil determination in microalgal cells: A new insight through
statistical modelling. International Journal of Chemical Engineering https://doi.org/10.1155/2015/695061
Halmi, M.I.E., Shukor, M.S. & Shukor, M.Y.A.
2014. Evaluation of several mathematical models for fitting the growth and
kinetics of the Catechol-degrading Candida parapsilopsis:
Part 1. Journal of Environmental Bioremediation and Toxicology 2(2):
48-52.
Hariz, H.B., Takriff, M.S., Mohd Yasin, N.H., Ba-Abbad, M.M.
& Mohd Hakimi, N.I.N. 2019. Potential of the microalgae-based integrated
wastewater treatment and CO2 fixation system to treat Palm Oil Mill
Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering 32: 100907.
Hariz, H.B., Takriff, M.S.,
Ba-Abbad, M.M., Mohd Yasin, N.H. & Mohd Hakim,
N.I.N. 2018. CO2 fixation capability of Chlorella sp. and its
use in treating agricultural wastewater. Journal of Applied Phycology 30(6):
3017-3027.
Johari, M.S. 2014. Evaluation of several
mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian 2(1): 1-6.
Lam, M.K., Yusoff, M.I., Uemura, Y., Lim, J.W.,
Khoo, C.G., Lee, K.T. & Ong, H.C. 2017. Cultivation of Chlorella
vulgaris using nutrients source from domestic wastewater for biodiesel
production: Growth condition and kinetic studies. Renewable Energy 103:
197-207.
López, S., Prieto, M., Dijkstra, J., Dhanoa, M.S.
& France, J. 2004. Statistical evaluation of mathematical models for
microbial growth. International Journal of Food Microbiology 96(3):
289-300.
Madadi, R., Zahed,
M.A., Pourbabaee, A.A., Tabatabaei,
M. & Naghavi, M.R. 2021. Simultaneous phycoremediation of petrochemical wastewater and lipid
production by Chlorella vulgaris. SN Applied Sciences 3: 505.
Maltsev, Y., Krivova,
Z., Maltseva, S., Maltseva, K., Gorshkova, E. & Kulikovskiy,
M. 2021. Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus
starvation. Scientific Reports 11: 19818.
Minhat, Z.B.T., Ab Rahaman,
M.S.B., Takriff, M.S. & Kofli,
N.T. 2016. Differentiation of biomass composition between isolated and commercial
strains of microalgae. Journal of Engineering Science and Technology 11(5): 737-744.
Mohd, N., Mohd Yasin, N.H. & Takriff, M.S. 2021. Predictive growth model of indigenous
green microalgae (Scenedesmus sp. UKM9) in Palm Oil Mill Effluent
(POME). IOP Conference Series: Materials Science and Engineering 1051(1): 012070.
Mohd, N., Mohd Yasin, N.H., Wan Osman, W.H & Takriff, M.S. 2024. Unloacking the potential of Chlamydomonas sp.
for sustainable nutrient removal from POME: A biokinetic investigation. Journal of Water Process Engineering 57:
104590.
Mohd Sadiq, U.A.F., Yow, M.E. & Jamaian, S.S. 2018. The extended monod model for microalgae growth and nutrient uptake in different wastewaters. International
Journal of Engineering & Technology 7(4.30): 200.
Ni Aznan, M.F., Mohd Yasin, N.H., Mohd, N. & Takriff, M.S. 2022. Penilaian model matematik bagi pertumbuhan mikroalga Characium sp. UKM1, Chlorella sp. UKM2 dan Coelastrella sp. UKM4 dalam air larut resapan sintetik. Malaysian
Applied Biology 51(5): 249-260.
Nordin, N., Yusof, N. & Samsudin, S. 2017.
Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste and Biomass Valorization 8(7): 2301-2311.
Rattanapoltee,
P. & Kaewkannetra, P. 2013. Nile red, an alternative
fluorescence method for quantification of neutral lipids in microalgae. World
Academy of Science, Engineering and Technology, International Journal of
Biological, Food, Veterinary and Agricultural Engineering 7: 889-893.
Shaari, A.L., Che Sa, S.N., Surif, M., Zolkarnain, N. & Ghazali, R. 2021. Growth of marine
microalgae in landfill leachate and their ability as pollutants removal. Tropical Life Sciences Research 32(2):
133-146.
Sun, X.M., Ren, L.J., Zhao, Q.Y., Ji, X.J. &
Huang, H. 2018. Microalgae for the production of lipid and carotenoids: A
review with focus on stress regulation and adaptation. Biotechnology for
Biofuels 11: 272.
Sun, Y., Huang, Y., Martin, G.J.O., Chen, R.
& Ding, Y. 2018. Photoautotrophic microalgal cultivation and conversion. In Bioreactors for Microbial Biomass and Energy Conversion. Green Energy
and Technology, disunting oleh Liao, Q., Chang, J.S., Herrmann, C., Xia, A. Singapore: Springer. hlm. 81-115.
Taib, M.R., Mook, B.N., Tahir, M.I.H.M. &
Aziz, M.A.A. 2021. Electrocoagulation treatment of sanitary landfill leachate
in Malaysia. IOP Conference Series:
Materials Science and Engineering 1051(1): 012074.
Talib, S.L.A., Mohd Yasin, N.H., Takriff, M.S. & Japar, M.S. 2023. Comparative studies on phycoremediation efficeiency of
different water samples by microalgae. Journal
of Water Process Engineering 52: 103584.
Teng, C., Zhou, K., Peng, C. & Chen, W. 2021.
Characterization and treatment of landfill leachate: A review. Water
Research 203: 117525.
Udaiyappan, A.F.M.,
Hasan, H.A., Takriff, M.S., Abdullah, S.R.S., Maeda,
T., Mustapha, N.A., Mohd Yasin, N.H. & Mohd Hakimi, N.I.N. 2020.
Microalgae-bacteria interaction in palm oil mill effluent treatment. Journal of Water Process Engineering 35: 101203.
Wei, L., Wang, Q.,
Xin, Y., Lu, Y. & Xu, J. 2017. Enhancing photosynthetic biomass
productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal
Research27: 366-375.
Yaakob, M.A., Mohamed,
R.M.S.R., Al-Gheethi, A., Ravishankar, G.A. & Ambati, R.R. 2021. Influence
of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid
production: An overview. Cells 10(2): 393.
Zhu, B.H., Sun, F.Q., Yang, M., Lu, L., Yang,
G.P. & Pan, K.H. 2014. Large-scale biodiesel production using flue gas from
coal-fired powerplants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresource
Technology 174: 53-59.
*Corresponding author; email: nazlinayasin@ukm.edu.my
|